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Linear programming

Optimization problem

(P )


minimize f(x)

subject to g1(x) ≤ b1
...

gm(x) ≤ bm,

where x ∈ Rn, f, gi : Rn → R, bi ∈ R. Program (P ) is linear if f, gi are linear functions. Reformulation:

(LP )

{
minimize cTx

subject to Ax ≤ b,

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n. Also maximize, ≥, =. A program (LP ) is efficiently solvable (P-time).
Note that < or > are NOT allowed.

History note: 1939 by Kantorovich1, Dantzig (simplex method).

1: Write the following (LP ) in the matrix form.

(LP )


minimize x + y

subject to x + 2y ≤ 14

3x− y ≥ 0

x− y ≤ 2

Solution:

(LP )



minimize (1, 1) ·

(
x1

x2

)

subject to

 1 2

−3 1

1 −1

 ·(x1

x2

)
≤

14

0

2



1Full professor at age 22.
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2: Diet problem: Formulate as a linear programming problem the following question: How many apricots
(x1), bananas (x2) and cucumbers (x3) does one have to eat to get enough of vitamins A, B, and C while
minimizing the cost?

Need to know: % of recommended daily intake, cost, and weight:

A C K $ weight

apricots 60 26 6 1.53 155g
bananas 3 33 1 0.37 225g

cucumbers 2 7 12 0.18 133g

Solution:

(LP )


minimize 1.53x1 + 0.37x2 + 0.18x3

s.t. 60x1 + 3x2 + 2x3 ≥ 100

26x1 + 33x2 + 7x3 ≥ 100

6x1 + 1x2 + 12x3 ≥ 100

Solution: (x1, x2, x3) = (1.4, 0.3, 7.6). The answer is 1.4 · 155g, 0.3 · 225g, and 7.6 · 133g
of apricots, bananas, and cucumbers respectively and the cost is $3.62.

Solution can be obtained using APMonitor. Go to apmonitor.com, click Try online
and paste the code below.

Model fruit

Variables

x[1] = 0, >= 0

x[2] = 0, >= 0

x[3] = 0, >= 0

End Variables

Equations

minimize 1.53*x[1]+ 0.37*x[2]+0.18*x[3]

60*x[1]+3*x[2]+2*x[3] >= 100

26*x[1]+33*x[2]+7*x[3] >= 100

6*x[1] + x[2] +12*x[3] >= 100

End Equations

End Model
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3: Farming: A farmer has 12 acres of land to plant either soybeans or corn. At least 7 acres have to be
planted. Planting one acre of soybeans costs $200 and one acre of corn costs $100. Budget for planting is $1500.
The sale from one acre of soybeans is $500 and from corn is $300. How many acres of what should be planted
to maximize profit?

Linear programming was the biggest invention in mathematics in the last century - if measured by $.

Solution:

(LP )



minimize (500− 200)soy + (300− 100)corn

s.t. 200soy + 100corn ≤ 1500

soy + corn ≤ 12

soy + corn ≥ 7

soy ≥ 0

corn ≥ 0

Solution is 3 acres of soy and 9 acres of corn. Profit is $2700.

APMonitor and Sage writeup of the problem.

Model farmer ! APmonitor

Variables

soy = 0, >= 0

corn = 0, >= 0

End Variables

Equations

maximize 500*soy + 300*corn - 200*soy - 100*corn

200*soy + 100*corn <= 1500

soy + corn <= 12

soy+corn >= 7

End Equations

End Model

p = MixedIntegerLinearProgram(maximization=True) # Sage

x = p.new_variable(nonnegative=True)

p.set_objective( 500*x[0] + 300*x[1] - 200*x[0] - 100*x[1])

p.add_constraint( 200*x[0] + 100*x[1] <= 1500 )

p.add_constraint( x[0] + x[1] <= 12 )

p.add_constraint( x[0] + x[1] >= 7 )

print "Profit $", p.solve()

print "Soybeans",p.get_values(x[0]),"acres, Corn",p.get_values(x[1]),"acres"
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4: 2-Player Zero-Sum Games:

In penalty kicks in soccer (football in World\USA),
the kicker (number 7) kicks the ball and usually tries
to aim at one of the top corners. The goalie (number
11) tries to guess which corner the kicker kicks and
jumps towards one of the corner. If the goalie has
a correct guess, there is a very good change for the
goalie to catch the ball. If the goalie guesses wrong,
it is a goal unless the kicker messes up.

Assume you are the kicker and you know that the
goalie has a handicap that if you shoot to the left and
the goalie jumps left, there is only 10% chance for
you to score but if you kick to the right and the goalie
jumps to the right, there is 50% chance of scoring. If
the goalie jumps in the opposite direction than your
kick, you have 95% chance of scoring. Should you kick
the ball to the left or to the right?

If you always kick to the right, the goalie will always jump to the right and you score 0.5 goals per kick. It is
better to pick left or right with some probability. What is the best left-right probability subject to the goalie
picking his random jumps to counter your strategy as much as possible?

Solution: Lets create a scoring table. In the row, the kicker picks left or right, then
goalie picks left or right (not knowing the kicker’s pick) and the outcome is in the table.

goalie

kicker

left right

left 0.1 0.95

right 0.95 0.5

To formulate this as a linear program, we start with variables ` and r. We also add a
variable s, which is the expected score (number of goals).

(LP )



maximize s

s.t. 0.1` + 0.95r ≥ s

0.95` + 0.5r ≥ s

` + r = 1

` ≥ 0

r ≥ 0

The solution is approximately ` = 0.346, r = 0.654 and s = 0.6557. Notice that this
randomized strategy gives at least 0.65557 no matter what is the strategy of the goalie.
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5: Ropes: We are producing packages of two 15cm ropes and one 20cm rope (say for some kid’s game).
Suppose we have have 400 times 50cm ropes and 100 times 65cm ropes. How should we cut the ropes to
maximize the number of produced packages?

Solution: #15 cm = A, #20 cm = B,

50cm = 15 + 15 + 20 . . . x1 . . . 2A + B

= 20 + 20 . . . x2 . . . 2B

= 15 + 15 + 15 . . . x3 . . . 3A

65cm = 20 + 20 + 20 . . . y1 . . . 3B

= 15 + 15 + 15 + 15 . . . y2 . . . 4A

= 20 + 15 + 15 + 15 . . . y3 . . . B + 3A

= 20 + 20 + 15 . . . y4 . . . 2B + A

(LP )



maximize p

s.t. p ≤ 1
2A

p ≤ B

A = 2x1 + 3x3 + 4y2 + 3y3 + y4

B = x1 + 2x2 + 3y1 + y3 + 2y4

400 ≥ x1 + x2 + x3

100 ≥ y1 + y2 + y3

Solution:

p = 528.5, x1 = 400, x2 = 0, x3 = 0, y1 = 14.28, y2 = 0, y3 = 85.71, y4 = 0

We are missing that xi, yj are actually integers! Adding the constraint that the variables
are integers result in significantly more difficult problem.
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Geometry behind linear programming and basics

6: Solve the following linear program:

(LP )


minimize x + y

s.t. x + 2y ≤ 14

3x− y ≥ 0

x− y ≤ 2,

Hint: Plot points (x, y) that satisfy all constraints and then identify the optimal solution among them.

Solution: equations:

y ≤ −1

2
x + 7 y ≤ 3x y ≥ x− 2

y = 3x y = x− 2

y = −1
2x + 7

x + y = 2

x + y = 0

x + y = −4 x

y

Optimum (x, y) = (−1,−3), value of objective function is -4.

Recall that a linear program can be written using a matrix A ∈ Rm×n and vectors b ∈ Rm and c,x ∈ Rn as

(LP )

{
minimize cTx

s.t. Ax ≤ b

Basic linear programming definitions:

• feasible solution is vector x such that Ax ≤ b. In other words, a point satisfying all the constraints.

• a set of feasible solutions

• an optimal solution is a feasible solution that is maximizing/minimizing the objective function.

7: What shape is the set of feasible solutions?

Solution: In the example above, a polygon. In general, polyhedra (“unbounded
polytope”). In 2D we could say it is an intersection of halfplanes (halfspaces in xD).

8: What shape is the set of optimal solutions?

Solution: In the example above, it is a point. But it can be also a line. Or a special
case, where it can be any feasible point (maybe you just want to know if a feasible
solution exists).
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9: Construct a linear program that has no feasible solution.

Solution:

(LP )


minimize x

s.t. x ≤ 3

x ≥ 4

10: Construct a linear program that has a feasible solution but does not have an optimal solution.

Solution:

(LP )

{
maximize x

s.t. x ≥ 4

11: Construct a linear program that has more than one optimal solution.

Solution:

(LP )


minimize x

s.t. x ≤ 3

y ≥ 0

y ≤ 2
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Introduction to the Duality for Linear Programming

Let (P ) be

(P )



maximize 2x1 + 3x2

s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

12: Without solving (P ) itself, is it possible to provide an upper bound on the value of (P ) by using equation
4x1 + 8x2 ≤ 12?

Solution: Yes - easily:
2x1 + 3x4 ≤ 4x1 + 8x2 ≤ 12

so the maximum is at most 12. We can even improve it by

2x1 + 3x4 ≤
1

2
(4x1 + 8x2) ≤ 6.

This gives a maximum of at most 6.

13: Without solving (P ), is it possible to provide an upper bound on the value of (P ) using equations
4x1 + 8x2 ≤ 12 and 2x1 + x2 ≤ 3? Hint: sum them

Solution:

4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

+

6x1 + 9x2 ≤ 15

Now we get 2x1 + 3x4 ≤ 1
3 (6x1 + 9x2) ≤ 5.

14: Without solving (P ), how would you try to find the combination of constraints that provides the best
upper bound? (solution might be another linear program, call it (D))

Solution: We try to combine the three constraints (not the non-negativity con-
straints) and obtain an upper bound. Say the first constraints is multiplied by y1, the
second by y2 and third by y3.

So we have a combination of

y1 · (4x1 + 8x2 ≤ 12)

y2 · (2x1 + x2 ≤ 3)

y3 · (3x1 + 2x2 ≤ 4)
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What else does yi satisfy? If yi < 0, the inequality is reversed, so yi ≥ 0. We need
the left hand sides to be at least 2x1 + 3x4, hence

y1 · 4x1 + y2 · 2x1 + y3 · 3x1 ≥ 2x1

y1 · 8x2 + y2 · x2 + y3 · 2x2 ≥ 3x2

Next, we want to minimize the right hand side, which is 12y1 + 3y2 + 4y3. It gives a
linear program (D):

(D)


minimize 12y1 + 3y2 + 4y3

s.t. 4y1 + 2y2 + 3y3 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1, y2, y2 ≥ 0

• (D) gives an upper bound on (P )

• (P ) gives a lower bound on (D)

15: Are solutions x = (12 ,
5
4) of (P ) and y = ( 5

16 , 0,
1
4) for (D) optimal solutions?

Solution: Yes! They are optimal solutions because they satisfy all constraints and
values of the objective functions are the same.

16: Find the dual program (D) to

(P )


maximize cTx

s.t. Ax ≤ b

x ≥ 0

Solution:

(D)


minimize bTy

s.t. ATy ≥ c

y ≥ 0

17: Find the dual program (D) to

(P )


minimize cTx

s.t. Ax = b

x ≥ 0

Solution: We first rewrite Ax = b as Ax ≥ b and −Ax ≥ −b
Then we get

(P )


minimize cTx

s.t. Ax ≥ b

−Ax ≥ −b
x ≥ 0

(D)


maximize b,−bT (u,v)

s.t. ATu− ATv ≤ c

u,v ≥ 0
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Let y = u− v. Then we can write

(D)

{
maximize bTy

s.t. ATy ≤ c

Note that y can be negative.

Dualization for everyone:
A ∈ Rm×n, c ∈ Rn,b ∈ Rm

primal dual

variables x1, . . . , xn y1, . . . , ym
matrix A AT

right hand b c
objective max cTx min bTy
constraint ith constrain ≤ yi ≥ 0

ith constrain ≥ yi ≤ 0
ith constrain = yi ∈ R

xi ≥ 0 ith constrain ≥
xi ≤ 0 ith constrain ≤
xi ∈ R ith constrain =

Strong Duality Theorem
For the linear programs

maximize cTx subject to Ax ≤ b and x ≥ 0 (P )

and
minimize bTy subject to ATy ≥ c and y ≥ 0 (D)

exactly one of the following possibilities occurs:

1. Neither (P ) nor (D) has a feasible solution.

2. (P ) is unbounded and (D) has no feasible solution.

3. (P ) has no feasible solution and (D) is unbounded.

4. Both (P ) and (D) have a feasible solution. Then both have an optimal solution, and if x? is an optimal
solution of (P ) and y? is an optimal solution of (D), then

cTx? = bTy?.

That is, the maximum of (P ) equals the minimum of (D).
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